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The failure of the Newtonian theory of gravitation to satisfactorily account for 
the motion of Mercury's perihelion cannot be held to have justified the develop- 
ment of general relativity. This paper shows how the origins of general relativity 
were firmly embedded in contemporary attempts to introduce the new mechanics 
of special relativity into gravitational theory. These new theories of gravitation 
took as their basis the etectrodynamical equations as formulated by Minkowski 
and attempted to represent the gravitational potential first by a vector and then 
by a scalar (in the four-dimensional sense). That Einstein chose the symmetric 
fundamental tensor gij as his gravitational potential is seen to have been both a 
natural and necessary development. With this viewpoint the full theory Of general 
relativity can be seen to be remarkably similar to those theories of gravitation 
that preceded it. The paper also contains a previously unpublished letter written 
by Einstein to H. A. Lorentz. 

1. INTRODUCTION 

Let us consider two reference systems Y~l and Y'2. YI is 
accelerating in the direction of its X-axis, and let y be the 
magnitude (timelike, constant) of this acceleration. 2E 2 is at rest; 
but finds itself, however, in a homogenous gravitational field, 
which imparts to all matter the acceleration - y in the direction 
of the X-axis. 

As far as we know, the physical laws in reference to YI do 
not differ from those in reference to X2; it is because of this that 
all bodies in the gravitational field are accelerating equally. We 
have therefore, in the case of the present position of our knowl- 
edge, no motive to the assumption that the systems Xx and X 2 
differ in any respect from one another and therefore will, in the 

535 

0020-7748/84/0600-0535503.50/0 �9 1984 Plenum Publishing Corporation 



536 Hickman 

following discussion, assume the full physical equivalence of 
the gravitational field and the corresponding acceleration of the 
reference system. (Einstein, 1907). 

This was the first enunciation of the principle of equivalence and 
immediately brought relativity theory and gravitation together under the 
same umbrella, since according to the principle, a homogeneous gravita- 
tional field can be replaced by an accelerating reference system. With 
hindsight it is known that the principle of equivalence, as stated above, is no 
longer a prerequisite to the establishment of the theory; indeed Synge goes 
so far as to say, "I suggest that it be now buried with appropriate honours." 
From an historical point of view, however, this is not the case, since it was 
via the principle that Einstein was led to conject that space-time was not 
Euclidean, but Riemannian. Put another way this means that in order to 
develop the theory of relativity, the Lorentz group is no longer the universal 
symmetry group and instead we have to consider the group of all continu- 
ous, differentiable coordinate transformations with nonvanishing Jacobian; 
this is the mathematical representation of the principle of equivalence. 

From this it seems that in extending the theory of special relativity to 
include accelerated frames of reference and hence via the principle of 
equivalence, gravitation, ds 2 no longer has its Minkowski form but is a 
general quadratic function of the coordinate differentials, and generally, 

ds 2 = g~jdx~ dx  j 

where i, j ,  = 1,2, 3, 4 for space-time. 
Thus the principle of equivalence leads us directly to the principle of 

general covariance, which itself is just the mathematical representation of 
the former principle, and therefore directly to the hypothesis that the 
physical four-dimensional continuum has a Riemann metric. This was the 
heuristic value of the principle of equivalence; it enabled Einstein to form a 
workable basis for the general theory of relativity and to establish in his 
mind exactly what was required to complete the theory. Basically two things 
remained, at this stage, to be tackled: 

1. The equations of special relativity must be transformed into equa- 
tions which are covariant with respect to nonlinear substitutions. 

2. The law of the gravitational field must be found, i.e., second-order 
differential invariants of g must be found. The ensuing chapters will show 
that the first problem concerned itself with the tensor calculus of Ricci and 
Levi-Civith, and, as far as electromagnetic equations were concerned, had 
already been solved by F. Kottler, (Kottler, 1912) and that Einstein fol- 
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lowed the example set by Kottler. The second problem had been considered 
by Riemann himself in connection with the tensor that now bears his name, 
and indeed Einstein had in fact successfully obtained the correct field 
equations in his paper with Grossmann (Einstein and Grossmann, 1913), 
but neither of them recognized the equations as physically applicable. 
Indeed, Einstein even convinced himself that because of arguments concern- 
ing causality, it was impossible to form a law of gravitation which was 
invariant for all possible transformations of the coordinates. 

No researcher works in isolation of those who are working in the same 
field, and this is especially true of Einstein during this period. Before he 
ventured along the tittle-traveled road of invariant theory, Einstein had 
attempted to form a theory of gravitation along more conventional lines. 
The remainder of this article will show that a tensor theory of gravitation 
was as logical a step in the development of theories of gravitation as was the 
advent of special relativity in the development of the theories of elec- 
trodynamics. This pressure, together with the implications of the principle 
of equivalence, led Einstein to general relativity. 

2. NEWTONIAN GRAVITATION 

There exists a vast literature on Newtonian gravitational theories and 
here is not the place to repeat them. However, something must be said as to 
why these theories were unsatisfactory, and I will do this by means of a 
little-known example which illustrates the depths to which past researchers 
were willing to go in order to salvage the old theory, and in fact, the 
ingenuity of these attempts. U. J. J. Leverrier carried out many calculations 
on the interactions of the planets of the solar system, analyzing the 
perturbation effects that each has on the other. It was he who showed the 
existence of probably the most famous "anomaly" of planetary motion, i.e., 
the anomalous motion of Mercury's perihelion. Due to various known 
effects the orbit of Mercury advances 5,599.7 seconds of an arc per century, 
and through his calculations, Leverrier found that some 41.25 seconds of an 
arc per century could not be accounted for by the above known phenomena. 
Rather than reject the theory on which these calculations were based (the 
theory had had some notable successes such as the discovery of Neptune), 
Leverrier and later J. Bauschinger hypothesized the existence of other 
undiscovered planets or some sort of planetary matter. We will call these 
hypotheses mass hypotheses, of which there were many, and investigate one 
of them, that put forward by H. V. Seetiger (1901; 1906a, b). 
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As his seat of matter Seeliger chose a phenomenon called the zodiacal 
light, the discovery of which is attributed to J. D. Cassini. 1 The masses 
which reflect the zodiacal fight were supposed to have the form of a flat disk 
surrounding the Sun and extending nearly in the direction of the orbital 
planes of the planets, reaching outside the orbit of the earth, and a 
maximum density equivalent to about 1/27th of a cubic meter of water per 
cubic kilometer of space. Seeliger imagined the disk shape to be made up of 
a number of extremely flattened ellipsoids of rotation superposed together 
so that the density varies after a certain law from the center outwards, as 
required. At first he introduced five such ellipsoids but later found that two 
would suffice. In order to reach agreement with Newcomb's residuals, he 
also added the hypothesis that a rotation of the empirical system of 
coordinates with respect to the "inertial system" must be taken into 
account. 

The theory can thus be reduced to three hypotheses: 
1. Attraction caused by an ellipsoid existing entirely within the orbit of 

Mercury. Conveniently, the proximity of this ellipsoid to the sun makes it 
invisible. 

2. Attraction caused by an ellipsoid which includes the earth's orbit 
and gives rise to the zodiacal light. 

3. A rotation of the empirical coordinate system of astronomy, i.e., the 
"fixed stars." 
The ingenuity of Seeliger's theory can be judged from the table of residuals 
comparing his calculations and those of Newcomb (Table I). In this table e 
is the eccentricity, ~" the perihelion, ~ the longitude of node, and i the angle 
of inclination. 

Criticism of Seeliger's theory was not immediately forthcoming, but in 
1913 J. Woltjer and W. de Sitter examined Seeliger's results in minute detail 
in order to find any serious discrepancy with observation. It is a credit to 
the merit of the theory that criticism had to take such a form. In order to 
analyze the results de Sitter produced a table of his own which presented 
Newcomb's residuals, Seeliger's residuals, and residuals that would be 
obtained if hypotheses 2 or 3 were denied (Table II). Much of the table 
consists of data already given in Table I, so only additional information is 
listed. The rows labeled A are the residuals obtained by rejecting hypothesis 
3. The rows labeled B are the residuals obtained by rejecting hypothesis 2. 

By a straightforward analysis of these residuals one can see, for 
instance, that the residuals obtained by assuming hypothesis B are just as 
good as those of Seeliger's theory, indicating that the second ellipsoid is 
superfluous, and that because of the residual +1.18", which is entirely 

lit is possible that it was known before this time; perhaps Romeo and Juliet, Act III, scene V, 
gives us a clue: "Yon fight is not daylight, as I know it: It is some meteor that the sun 
exhales." 
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Q u a n t i t y  Planet Newcomb residual Seeliger residual Mean e r r o r  

M e r c u r y  + 8 .48"  - 0 .01"  _+ 0 . 4 3 "  

Venus - 0 . 0 5 "  - 0 .10"  _+ 0 . 2 5 "  

eA~r E a r t h  + 0 . 1 0 "  + 0 . 0 3 "  •  

M a r s  + 0 .75"  + 0 .16"  • 0 .35"  

M e r c u r y  + 0 .61"  - 0 .04"  _+ 0 .52"  

sin i Af~ V e n u s  + 0 .60"  - 0 .02"  • 0 .17"  

M a r s  + 0 .03"  - 0 .20"  • 0 . 2 2 "  

M e r c u r y  + 0 . 3 8 "  - 0 .14"  • 0 .80"  

A i "  V e n u s  + 0 .38"  + 0 .21"  • 0 .33"  

[3] E a r t h  - 0 .22"  + 0 .28"  • 0 . 2 7 "  

M a r s  - 0 .01"  + 0 .01"  • 0 ,20"  

M e r c u r y  - 0 . 8 8 "  - -  • 1 .50"  

Ae V e n u s  + 0 .21"  - -  • 0 . 3 1 "  

E a r t h  + 0 .02"  - -  _+ 0 . 1 0 "  

M a r s  + 0 .29"  - -  + 0 .27"  

" T h i s  va lue  was not actually calculated by Seeliger b u t  b y  J. Wol t j e r  (Wol t jer ,  1914; 

de Sitter, 1914) using the same method. 

inadmissible, the rotation of the empirical coordinate system seems to be the 
most important feature of the theory. The ad hoc nature of the theory is 
thus exposed, and like all of the theories that preceded it, Seeliger's theory 
suggests that it was the underlying Newton• mechanics of the system that 
must be at fault. 

It is of interest, here, to note that if one uses an approximation method 
to solve Einstein's gravitational equations it is found that the results indicate 
that there is indeed a rotation of the empirical system of coordinates, and 
when applied to the motion of the moon, there is an advance in the perigee 

T A B L E  2 

M e r c u r y  V e n u s  E a r t h  M a r s  

e A~r A 0 .00"  - 0 . 0 5 "  + 0 .18"  + 0 .52"  

B - 0 . 0 2 "  - 0 . 1 2 "  - 0 . 0 4 "  0 .00"  

sin i A ~  A + 0 . 5 5 "  + 0 . 0 1 "  - -  - . 1 1 "  

B - 0 . 3 1 "  + 0 . 0 5 "  - -  - 0 .24"  

Ai  A - 0 . 1 2 "  + 0 . 1 7 "  + 1 .18"  + 0 . 0 5 "  

B - 0 .15"  + 0 .23"  - 0 .17"  - 0 .01"  
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and node of some 1.94" per century. According to Seeliger's theory we have 

d& df~ 
dt = + 2.11", dt - 2.50" 

while 

d& df~ 
( A )  dt = + 2 . 0 4 " ,  d--S- = - 3 . 3 0 "  

dO df~ 
(B) dt = + 2.10", dt 2.06" 

These results seem to indicate that it is indeed the rotation of the chosen 
inertial frame with respect to the general inertial frame of the sidereal 
system (empirical system of coordinates) that is the cause of the discrepancy 
between theory and observation. One might be tempted to suggest therefore 
that Newtonian theory may be retained if a suitable rotation of coordinates 
is chosen, but it must be emphasized that the rotation, as the relativistic 
analysis shows, is essentially non-Newtonian, and arguments as to the 
nature of the rotation are between relativists and nonrelativists, both of 
whom, however, are non-Newtonian. 

The above example was chosen so as to summarize, fairly succinctly, 
the reasons why Newton's laws of gravitation had to be replaced and why 
these new theories applied themselves to the very underlying mechanics and 
the underlying philosophy of the problem rather than repeating the errors of 
former years, in only producing superficially different theories; the advent 
of special relativity was the catalyst for this change in emphasis. 

3. SCALAR AND VECTOR THEORIES OF GRAVITATION 

The influence of the theory of relativity was, as was to be expected, first 
felt in the field of electrodynamics and given additional impetus when 
Minkowski introduced his concept of space-time and proceeded to apply the 
results of his ideas to the electrodynamics of moving bodies. The years 
between 1905 and 1912 saw the results of Einstein and Minkowski being 
applied to electrodynamics by many researchers: Laue, Abraham, Lorentz, 
for example, in the context of establishing a cogent and consistent picture of 
the electromagnetic field. We may summarize most of the results in a 
covariant notation as follows. 

Lorentz himself had shown that the force per unit volume (force 
density) f can be represented as the resultant of the surface forces, which are 
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produced by the Maxwell stresses and the negative time derivative of the 
momentum density of the ether. The stress tensor is defined by (Lorentz, 
1904) 

T~k=(E, Ek- �89 Hk--�89 i , k=1 ,2 ,3  

and the electromagnetic momentum by 

g =  c~S,  S = c ( E A H )  

Then 

f = div T - 

where T is the stress tensor whose components are T~k. This vector equation 
together with the energy equation 

Ow 
0 - - 7 + d i v S = - f - m ,  w = � 8 9  2) 

can be combined to form a four-vector equation 

OSik 
f,.= Ox k , i, k =1 ,2 ,3 ,4  (1) 

where Sik is a symmetrical tensor called the energy momentum tensor whose 
components are such that 

Sik = --T~k for i, k =1 ,2 ,3  

( S14S24834 ) = ( & l & 2 & 3  ) = / S = icg 
c 

and 

844 ~ - W  

The importance of equation (1) is that for i = 1,2, 3 it represents the law of 
conservation of momentum, while for i = 4 it represents energy conserva- 
tion. 

The above results, which are initially derived in the context of elec- 
trodynamics, were used to form the basis of a general dynamics, which in 
turn, as we shall see, was used to form the basis of several theories of 



542 Hickman 

gravitation. Basically the transition from electrodynamics to gravitational 
theory was performed by means of the principle of the inertia of energy, by 
which to each energy E there corresponds a mass M = E/c 2. What the 
above equations tell us, however, is that E need not be the total energy of a 
system, as was first hypothesized, but that a mass (or momentum) may be 
associated with each individual energy (or energy current). This result 
follows from the symmetry of the energy-momentum tensor, for 

and hence 

Si,=Ski, i ,k  =1,2,3 

g = S / c  2 

Lorentz, O. F. Mossotti, and F. Zollner between them considered the 
gravitational field and its equations as analogous to the electromagnetic 
field and its equations such that the expression for the force of gravity 
referred to unit matter is given by 

fS=ES+I(MAH g) 
c 

and the differential equations of the static gravitational field are 

and 

divE s = _ p., 

E g = - grad ~p 

where ~ is the gravitational potential, g,, the mass density, and units have 
been chosen appropriately. The equation for the energy density in the above 
case is analogously 

w s  = - �89 (E  s)2 

and for the nonstatic case 

The defects of this form of the theory are fairly obvious. First, the force 
of gravity is hypothesized to be velocity dependent; this has not been 
experimentally verified. Second, since the expression for the energy density 
is negative this means that in any region of space, its energy is decreased if a 
gravitational field is introduced. It should be noted at this point that the 
theory as developed by Poincar6 in the last section of his Rendiconti paper 
also suffered from these defects. 
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Now as suggested above this theory of gravitation can take as its basis 
those equations already developed; thus the conservation laws of the 
gravitational field are given by 

OS~ (2) 
g~ = a x  k 

where the g is not a tensor index but a superscript denoting the gravitational 
case. As in electromagnetism, the quantity Eg can be derived from the 
vector and scalar potential resulting in the fact that S g is now to be 
considered a function of the four-vector potential q~i through the equation 

t ~  k 0t~ i 
F/k ~ - -  

,gx ~ 9 x  k 

For this reason the above-outlined theory and others similar to it were 
known as vector theories. 

An obvious alternative to the vector theories of gravitation is to form a 
theory whose basis is the assumption that the gravitational potential is 
derived from a scalar. In the years preceding Einstein's theory, these scalar 
theories, as they were called, dominated the gravitational scene, as can be 
seen simply by noting the list of prominent scientists who made contribu- 
tions to the subject besides Einstein himself: Abraham, NordstrOm, and 
Mie, to name but a few. We shall analyze the most important of these 
theories, their advantages and disadvantages, to see how their failure and 
the failure of the vector theories made a tensor theory of gravitation (in the 
sense that the gravitational potential is a tensor) the logical alternative. 

The difficulties of the vector theories of gravitation, as far as the energy 
density were concerned, were largely overcome by assuming that the gravita- 
tional potential depended on a scalar rather than a vector. Abraham, taking 
his cue from a paper by V. Volterra, set up a scalar gravitational theory in 
the following way (Abraham, 1912a). 

The gravitational force per unit volume has the following components: 

Oea Oq, 

f (  = - o,.o Ox 1 , f ~  = - Omo OX 2 

Oq, Oq, 
fg~--  - Pm o OX 3 , f4  g =  -- Pmo OX 4 

where P.,o is, as yet, an undetermined factor. Now through direct compari- 
son with electrodynamics, in which 

f4 = L-cP (MA E) 
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where M is the velocity of the matter with respect to some frame, we have 

Oq, 
c f #  = iCpm ~ 

Oq, 
OX 4 = Pmo- ~ -  

which describes the rate at which the gravitational forces are doing work. 
Thus we have 

Oq, 

f ?  = - P, .o Ox ~ 

and 

a s # * )  
L ~ = a x  ~ 

where this time the superscript g(@) denotes not only the case of gravitation 
but also the fact that S,{ (*~ depends on the scalar @, In detail we have then 

Sgl(r = 

292( r ) = 

S ~ , , =  1 ( Oe# 12 1 

S~,,= a( 0@ ]2 1 
- 2 k-~x~ / - - i  

1 ( a @ )  2 - 1 2  ~ Ox 1 2 ( ,-)2-0x 20@ ~(0~331 )2_ ~(0_~41 )2 

1 [ Oq, ~2 Oq, ]2 1 1 ,  (oot 
} - 0 : , '  1 

( Oq~ 12+ 1 
Ox 4 ] 

( a~, 12 a a~, 12+a 
"~X31 OX 4 ] 

S ~ ,  ) = S~z~,) _ Oq, O,l, 
Ox 2 0 x  s 

S ] ( ,  ~ = S { j ,  ) _ 0 r  Oq, 
Ox 1 0 x  3 

S f ~ ,  ) = S ~ ,  ) _ a ~  aq, 
Ox 1 Ox 4 

S~( ,~ = S,  f2(, ) _ Oq, Oq, 
Ox z Ox 4 

S3g~, ) = S,f~,) _ Oq, aq, 
Ox s Ox 4 

Ox 1 Ox 2 
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As before, analogously 

aq, -rad c2g g = sg = - --~E, 

and 

W g = - -  S ~ r  

= 1[(2 ~ \-~-Fxl ]a#~/2+ ( ~x 2 ]ar (_~x3] - a r  / 2 (_~x4jjaqJ 12~ 

1 a~ 2 a~/2+ a~/~+ 1 a~ 

represent the momentum density and the energy density, respectively, of the 
gravitational field. 

It should be noted that as in electrodynamics these equations represent 
the energy and momentum conservation laws and that, significantly, W g, 

the energy density, is positive as required. By extending the usual vector 
analysis to four dimensions we have 

a x  k rar ax  ~ 

where 

a2~ 
1 3 ~ = - -  

~x i  2 

but from equation (2) comes 

ar 
fig = - D ~ ,  ax i 

and therefore from 

i f =  - Pmo ax  i 

we have 

D,=pm0 (3) 
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which in the context of this theory is taken as the generalization of Poisson's 
equation so that Ore0 can therefore be interpreted as the rest mass density in 
the four-dimensional sense. This equation is historically extremely im- 
portant in that it marks the point where the theories of Abraham and 
Einstein crossed; the point in fact where Einstein, in his characteristically 
stubborn way, chose to go his own way in insisting that it was his principle 
of equivalence, which first indicated the need to extend the principle of 
special relativity, that must act as the guideline along which any gravita- 
tional theory must develop. This is the point where Einstein differs from all 
other researchers. 

Both Einstein and Abraham had come to the conclusion (Einstein some 
four years earlier than Abraham), that the gravitational potential is a 
function of the velocity of light, but differed as to their conclusions as to the 
effect this hypothesis had on the nature of space and time. Abraham 
thought that the Lorentz transformations would still be valid, just as in 
special relativity (constant c), in infinitely small space-time regions where c 
may be considered as constant; consequently Einstein's principle of relativ- 
ity would only be valid in such isolated systems. Einstein did not want to 
give up his principle, because to him the idea of limiting the principle to the 
case of uniform motion between systems elevated the concept of inertial 
systems to an unwarrantable position and further retained the absolute 
nature of acceleration. Within his own theory at this time such restraints on 
the validity of the principle led to contradictory results. If Abraham's 
argument was valid then in an infinitely small space-time region the Lorentz 
transformations become 

d x - v d t  
d x  ~ - - 

(1 - O2//C 2 )1 /2  

d t  , =  ( -  v / /  c 2)  d x  ..~ d t  

(1 - v 2 / c  2 ) 1 / 2  

where v = I ml. Written in a more workable form these become 

d x ' =  fl dx  - vfl dt 

d r =  - B d t  

where fl is the relativistic factor 1/(1 - v2//c2) 1/2. NOW dx  t and dt" must be 
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perfect differentials, hence 

0~ = 0 ( -  08) 
Ot Ox 

and 

o[-(o/c~)B] = a~ 
Ot Ox 

which when written in full become 

at (1-  oVc2) -'/2 = ~ (1- oVc2) -'/2 

~ (1- ~Vc~) -~n = ~ (1-  ~Vc~) -~/~ 

(4) 

If it is now understood that the above equations are valid for an infinitely 
small region of space-time in which there exists a static gravitational field, 
then c is an arbitrarily given function of x but independent of t. If the 
dashed system is supposed to be in uniform motion, then v must be 
independent of x and necessarily independent of t. From this analysis 
therefore we conclude that the left-hand side of equations (4), and conse- 
quently the fight-hand side, must vanish accordingly. This latter conclusion 
is, however, impossible, since in the case of arbitrary functions of x for 
given c both right-hand sides cannot be made to disappear by choosing v as 
a suitable function of x. Herein lies the notion that as soon as one gives up 
the universal constancy of c one cannot retain the Lorentz transformations 
for an infinitely small space-time region. 

With this argument in mind one can readily see the dilemma that faced 
Abraham. If one retains the relativity principle it seems that one must 
choose the factor c to be a constant, and if c is further to be interpreted as 
the gravitational potential, then constant c corresponds to no gravitational 
field, and if one assumes that in small space-time regions one allows c to 
vary, thus permitting the existence of a gravitational field, then because of 
the above argument the Lorentz transformations would no longer be valid. 
Abraham appropriately rejected the validity of the principle of relativity as 
far as gravitational fields were concerned. Einstein, as we know, retained the 
principle of relativity, extending it through his principle of equivalence to 
include accelerations, which themselves were judged to be equivalent to 
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gravitational fields. Historically one can therefore see the immense impor- 
tance of the argument that went on between Abraham and Einstein (Einstein, 
1912a, b) 2 for it pushed Einstein more and more to the point where he did 
not doubt the absolute validity of the path he was taking, and although he 
worked on some scalar theories of gravitation, no doubt spurred on by 
Abraham, who was sometimes extremely arrogant in his criticism, these only 
added to his conviction. Further evidence as to the unsuitability of 
Abraham's scalar theory was given by Einstein in a paper entitled "Zur  
Theorie des statischen Gravitationsfeldes" (Einstein, 1912c) in which he 
showed that given the important equations previously derived for the static 
gravitational field, namely, 

c = c o + a x  

where a is a constant previously explained 

Ac = 0 for material free space 

A c  = kcPm ~ 

where k is a gravitational constant. The force density is given as before by 
the expression for f g ;  for matter at rest we have, again as before 

f g  = - p,,ograd c 

then the following integral can be formed 

1 rAc  
f dt = - f Omograd c dt = - j --- -grad c dt 

The integral is supposed taken about a space for which c is constant in the 
infinite and where consequently the law of action and reaction demands 
that it vanishes; otherwise matter which exists in the region under consider- 
ation will experience a self-imparted motion. The latter integral is in general 
not equal to zero and therefore the theory is not consistent, which led 
Einstein to doubt the whole foundations of the theory, and consequently to 
turn to some other form of gravitational theory. The venture that Einstein 
took into the gravitational scalar theories contains another interesting 
historical point in that it was in one of Einstein's papers of this period 

2Both of these articles were Einstein's replies to remarks made by Max Abraham. Einstein 
finally stopped the communications because of Abraham's complete inability to listen to the 
reasoning behind the remarks and his personal animosity. 
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(Einstein, 1912c) that he first introduces the important equation 

~(f(c2dtR-dx2-dy2-dz2)l/2}=O 

for the motion of a material point not acted upon by any external force in a 
static gravitational field. Abraham, on the other hand, pressed on with the 
theory arriving at the same equations as Einstein. The field equation 
obtained by Abraham was soon revised, in the light of Einstein's early 
arguments, to become 3 

cl/21--Icl/2 = 2PraC 

which in the static case agreed with the equation obtained earlier by 
Einstein up to a factor of 2. Abraham realized that both sides of this 
equation had differing behavior under Lorentz transformation and conse- 
quently he gave up the validity of the principle of relativity and as a result 
moved away from the direction in which Einstein had been forced to move 
due to his belief in that principle (Abraham, 1912b). 

While the debate between Einstein and Abraham was going on, other 
theories of gravitation were developing which perhaps might have given 
Einstein other roads to travel. We will give a short account of these and 
indicate why they, just like the theories of Abraham and the vector theories 
that preceded him, were equally unacceptable to Einstein. It seemed at that 
time, while the argument raged, that if the hypothesis that the quantity c, 
taken to represent the gravitational potential, was no longer required to be a 
universal constant led to such contradictory and unsatisfactory results, then 
the best thing to do was to adhere strictly to the concepts of special 
relativity and develop a theory of gravitation in which the velocity of light c 
is a constant and whose equations are invariant with respect to Lorentz 
transformations. The important theories of G. NordstrOm and G. Mie 
(NordstrOm 1912; 1913a, b; 1914; 1914/15) fall into this category, though 
the theory of the latter will not be dealt with because it evolved as part of a 
much wider theory that concerned itself with the foundations of matter and 
here is not the place to examine such a far-reaching theory. 

NordstrOm derives, in reference to Abraham's early theory, the gravita- 
tional tensor Si{ (*) through the scheme on p. 544 above from a scalar 
gravitational potential q which satisfies the field equation Pmo= t3q, where 
again Pro0 denotes the rest mass density. Then it follows as before that the 
gravitational force density is 

OO 
fi g= -pmo sxi, i =1 ,2 ,3 ,4  

3The p,,, in this case of course takes into account the density of other fields as well as matter. 
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Now provided the body is small so that the gravitational field beyond its 
boundaries may be regarded as homogeneous, the gravitational force acting 
on a body of rest mass OMo = fO,, o dVo, where the volume element is given by 
d V =  dVo(1 - 02/c2) 1/2, dV 0 being the rest volume, is 

R g = f F g d V -  OUo (c 2 _ v2)l/Zgrad @ 
c 

A necessary conclusion of special relativity is that there can be no 
choice but to relate the scalar potential q~, according to equation (3), to P,,o, 
which is an invariant with respect to Lorentz transformation, with the result 
that the gravitational force on a moving body is not proportional to its 
energy, hut to its Lagrangian function 

L = - P M o C ( s  2 - -  O2) 1/2 

The importance in this choice of Lagrangian function lies in the fact that for 
small velocities it is not the sum of the potential and kinetic energy, but 
their difference that will determine the weight of the body. Now the scheme 
of things is such that q~ can only enter into the Lagrangian function in the 
following way. 

The momentum laws obtained through the method of Lagrangians 
must be formed such that 

i.e., 

OL 
R g = ~ grad q~ = - - -  

o~p 

dS 
dt = grad L 

OL 
= ~ grad q~ acp 

whose integral is 

M' e~/,.2 
PM~ = C 

where M'  denotes a mass constant independent of q~. 

must agree with the former expression for R g, which results in the differen- 
tial equation 

dPMo_ PMo 
dep c 2 

dPMo " 2 - ~  c( c - v2) 1/2"gradq~ 
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In his first theory NordstrOm introduced the Lagrangian function 

L = - M ' e e P / d ' ( c  2 - v 2 )  1/2 

from which the momentum and the energy are derived in the usual way: 

O L  m = M , ( c  2 _ v 2 ) _ l / 2 . e r  
S = o v  v 

O L  
E = v--~v L = M ' c 2 ( c  2 - v 2 ) - l / 2 . e q ' / c 2  

(5) 

and the gravitational force becomes 

R g  = _ _ _  

M' )1/2 e ~/C2. ( c 2 - v 2 �9 grad q~ r 

and therefore the equation of motion of a material point or equivalent body, 
given by the equation d s / d t  = R g becomes 

d f , /c  = m } 1 , )1/2 
. . . . .  e * / C ' . ( c  2 - v 2 .grad ~ 

~-~ ~ e ' ( c 2 _ v2 )1/2 c 2 

The situation is simplified if we revert to the static case where from equation 
(5) the energy integral 

e e~/c2 
= const 

( c  2 - v2)1/2 

is valid, so that in Nordstrt~m's theory the equations of motion of a material 
point in a static gravitational field are 

i.)2 

This compares with 

d m 1 grad 

obtained by Einstein and Abraham. The important and significant dif- 
ference between them is illustrated when one considers the case m = C. In 
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Nordstr0m's theory the acceleration is zero, indicating that light travels in 
straight lines, while of course, in the latter theory it follows a curved path. 
This point together with the result that in Nordstr0m's theory the gravita- 
tional mass is not proportional to the inertial mass, which as we have seen 
Einstein regarded as the foundation stone of any theory of gravitation, 
meant that this theory was not very well received, and NordstrOm conse- 
quently developed a theory on a similar basis except that the mass propor- 
tionality was achieved. 

According to Einstein any gravitational theory must satisfy certain 
fundamental postulates. The requirements can be summarized as follows: 

1. The conservation laws of momentum and energy must be fulfilled. 
2. There must be equality of inertial and gravitational mass. 
3. Any system of equations used must be covariant with respect to 

linear orthogonal substitutions (generalized Lorentz transforma- 
t!ons). 

4. The observed natural laws do not depend on the absolute values of 
the gravitational potential or potentials. 

Without going into details Nordstr0m's new theory satisfied all of these 
postulates except that in this theory the inertia of a body depended on 
bodies extraneous to the system under consideration, as Einstein would 
require, but this effect increased the further the body was removed from the 
others. This was, of course, an unacceptable result. However it is a historical 
fact that Einstein was deeply influenced by NordstrOm's theory, as can be 
seen in the development that took place in Einstein's own attempts in the 
following years. 

4. EINSTEIN'S TENSOR THEORY 

So far we have seen that if one takes either a scalar (in the four-dimen- 
sional sense) or a vector to represent the gravitational potential a theory 
results that is either inconsistent or does not meet the requirements listed 
above; so, for example, Abraham's theory does not meet the requirements 
of postulate 3. Einstein therefore took the next logical step, which was to 
choose a tensor to represent the gravitational potential. The essential 
difference between a tensor potential and a scalar potential lies in the fact 
that a theory founded on a tensor potential allows the existence of induced 
gravitational forces of the type first hypothesized by E. Mach and which 
Einstein convinced himself was a necessary component of any gravitational 
theory by once again turning to a direct analogy with electrodynamics. He 
was able to show that if a system is arranged as shown in Figure 1, the 
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spherical layer, when given an acceleration, acts so as to produce a force 
which acts on the material point situated as its center. If the shell is at rest 
its presence increases the inertia of the mass at its center, and finally if the 
shell rotates then a coriolis force is formed inside the shell in such a way 
that a pendulum suspended inside is affected so that its plane of oscillation 
is carried along. Later Einstein was able to absorb this concept into his 
theory, which brought him great delight because he had at last quantified 
those thoughts of Mach on the subject which he had for many years himself 
thought to be deeply significant, from both a mathematical standpoint and 
a philosophical standpoint. 

It was obvious to Einstein that the system of equations for the 
gravitational field, together with his deliberations concerning the extension 
of the principle of relativity, must be some generalization of the well-known 
Poisson equation 

A@ = 41rkP.,o 

where @ is replaced by the ten quantities gik and Pro0 by a ten-component 
symmetrical tensor H ~k so as to form a system of the form 

M ik = x H  ik 

where M ik is formed from differential expressions of the gik and X is a 
universal constant (gravitational constant). 

One can at once see the similarity in form between Einstein's system of 
equations and those of the earlier vector and scalar theories, a point that we 
will take up later in more detail. The first set of equations that Einstein used 

Fig. I. 
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were as follows (cf. Einstein and Grossmann, 1913, p. 239): 

S k ( g ) = x ( H i k  + D ik) 

__ 1 ~  ~OX a gab~'~--~ -- gabgcd OqXa OX b (6) 

and 4 

_ 2xDik = g.igbk Ogcd Og cd 1 gikg~b Ogcd Og ca 
Ox ~ Ox b 2 Ox ~ Ox b (7) 

The impulse-energy laws for material processes and the gravitational field 
together take the form 

o + v'k)}=O 
Ox k 

indicating conservation. H ik and D ik can be thought of as stress-energy 
tensors for the material processes and the gravitational field, respectively. 

This system of equations achieved much of what was demanded by 
Einstein. For  example, the relativity of inertia can be demonstrated in the 
first approximation by the following equations for the impulse I and the 
energy E: 

i~=OMo(l+ X f O . , o d V ] x ,  
- ~  J - - - - ~  ] 7 etc. (8) 

and 

E = CPMo(1-- X I" dV~ 1 (9) 

The first part of the expression for E shows that the energy of a rest mass 
point decreases due to the presence of other masses in its vicinity and the 
same presence of other masses causes an increase in the inertia of the mass 
point, as required. There was, however, a fundamental problem associated 
with the scheme described above because in order that the laws of conserva- 

4 It is essential to realize that these equations are not yet tensor equations because they are valid 
only for linear transformations and not the continuous differentiable transformations. 
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tion of momentum (impulse) and energy be fulfilled one must demand that 
the equations be covariant with respect to certain "legitimate" transforma- 
tions only, rather than with respect to arbitrary substitutions as was 
required if one was to accept the arguments that Einstein himself had put 
forward. The delight that Einstein obtained from his researches, and the 
frustrations, are clearly illustrated in an up till now unpublished letter from 
Einstein to Lorentz (Einstein, 1911; see Appendix). The date of this letter, 
August 14, 1911, shows just how advanced Einstein's thinking was at this 
stage as compared to others. The fact that his "house of cards," as he called 
his theory in a letter to Wladyslaw Natanson (Bergmann, 1968), rested on 
his principle of covariance and had appeared to have toppled caused him 
much disappointment and delayed his progress by about two years. Here, 
however, is not the place to discuss this side of the development of the 
theory; we return to consider how closely Einstein's theory resembled those 
preceding it. 5 

If we introduce the following quantities 

Ti k = ( -  g)l/2ginHnk 

and 

ti k = ( - g)l/2gi. D"k 

then equation (6) takes the form 

o_kn ~ 0 xl/2 ab ,g [ ( - g )  g gi~-=---i-~ l = x ( T , " + t T )  
dx~ l 

(lO) 

and equation (7) takes the form 

- 2 X t T = ( - g ) X / 2 {  gb'Sg~aOx' Ogr b 6"g~b 9gcaOx ~ 8g~dldx b ) 

and the conservation laws take the form 

0 (T/a + tT} = 0 
tgx a 

5It is interesting to read Einstein's reasons for only granting linear transformations, (see 
Einstein and Grossmann, 1913, p. 260) and to note that Grossmann realized that their field 
equations were not the logical ones to use, but rather ones including the Riemann-Christoffel 
tensor would be more appropriate. He, however, thought the latter were unsatisfactory in that, 
under certain conditions, reduction to the Poisson equation was not forthcoming. 
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This last equation has an identical form to that equation produced by 
NordstrOm to represent the conservation laws, and, despite its different 
foundations, is also remarkably similar in detail, though of course the 
functions occurring in NordstrOm's theory were based on a scalar potential 
and covariant with respect to generalized Lorentz transformations only. In 
fact there is a remarkable similarity in form between Einstein's theory and 
the scalar and vector theories that preceded it, as can be shown in the 
following way, in which generalizations are made so as to make the 
comparisons more visible. 

Abraham had shown that if the equivalence of gravitational and 
inertial masses was to be fulfilled then one could not use a six-vector to 
describe the gravitational potential, and consequently, using the equations 
already developed in electrodynamics, he formed his system of equations 
based on a scalar potential. The field equations in Abraham's first theory 
can be written in the generalized form 

p i  = 0q~ and 3Qi 
Ox i Ox i Kp,,,o 

where i runs from 1 to 4 and as before the imaginary coordinate system has 
been used. Another way of expressing things is to say that we have 
described the gravitational field by two vectors (p, ip 4) and (Q, iQ4), then 
more explicitly we have 

p x = _  0__~ p y =  Oqa p,_= Oq~ p 4 =  Oq, etc. 
Ox ' Oy ' az ' Ot ' 

The quantities pi and Q~ are related to one another, for example, in a way 
similar to the relationship that exists between D and E in electrodynamics. 
In fact, in their respective theories Abraham and Nordstrrm assumed that 
p~ and Q~ were identical to one another while Mie regarded them as distinct. 

Now let us consider Einstein's theory in the light of this. We have 

~ ] Ox ~ ( _  ,1/2 ~b Og k" g )  g = + t,.") 

but 

thus 

Og k" = _ gkdgne Ogde 
OX b OX b 

Ox ~ ( _  g)l /2g~bg.~ = -- x ( T / '  + t ; )  
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Consider now the approximation that gave us equations (8) and (9), i.e., let 

gab = g~b + h ah, gab = ~ab + hal, 

where the gab have the constant values of special relativity. With this 
approximation equation (10) takes the form 

c~2hin 
xT/ '  

t~X a2 

which is identical in form to the earlier equations of the previous theories if 
we write 

tg h in 
Q a =  Ox ~ 

indicating that Einstein's theory differs from those theories simply in that 
has been replaced by a tensor potential and the mass density by a stress- 
energy tensor. 

Indeed, even in the full theory this similarity is exhibited, though of 
course not so clearly, if one rewrites equation (10) to obtain 

0 
OxO(V~ = - x e , "  

where 

,rina = ( _  g)l /2gabg,,c Ogic 
aX b 

n n +t, 

5. CONCLUDING REMARKS 

In conclusion therefore Einstein's theory shows the tremendous in- 
fluence that electrodynamics had on the construction of his theory, even 
down to some detail. Even though he differed fundamentally from those 
who attempted to construct gravitational theories by direct analogy to 
electrodynamical theories, his own theory was ultimately not that different 
in form, but, however, completely different in its epistemology. 
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APPENDIX A: THE EINSTEIN LETTER 
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APPENDIX B: THE TRANSLATION OF THE TECHNICAL 
PART OF THE EINSTEIN L E T r E R  

Now to gravitation. I am made so happy that you are taking up its 
research with such warmth. But alas, the subject has still so many difficul- 
ties that my confidence in the admissibility of the theory is still uncertain. 
The model up till now is satisfactory, as long as it deals only with the 
influence of the gravitational field on other physical processes. Then the 
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absolute differential calculus permits the formulation of equations which are 
covariant with respect to arbitrary substitutions. The gravitational field 
(gu,) appears, so to speak, to be the framework on which all hangs. 
However, the gravitational equations themselves do not, alas, have the 
characteristic of general covariance. 

Now confidence in the entire theory rests upon the conviction that 
acceleration of the reference system be equivalent to a gravitational field. If 
therefore all systems of equations of the theory and also therefore equation 
(18) do not admit, in addition to linear, still other transformations, then the 
theory, refuting its own origin, stands in the air. Till now it has been 
impossible for us to give any nonlinear substitution with respect to which 
equation (18) would be covariant. Two PoSsibilities of a fundamentally 
different nature then come into consideration: 

. 

. 

Transformations which are independent of the existing g,~ field, 
which Ehrenfest described as "independent transformations," have, 
as far as I know, use only within group theory. 
Transformations, whose p first fixed by differential equations of the 
g~, field regarded as given, which therefore must be adjusted to the 
existing g~,~ field. Such transformations--as far as I know--have 
still not yet been systematically investigated (dependent transforma- 
tions). 

The existence of "independent" nonlinear transformations is the sim- 
plest possibility; these however, without my being able to prove it, appear 
not to occur. It is enough, however, since only the existing dependent 
nonlinear transformations do not come into additional conflict with the 
equivalence hypothesis. 

Fundamentally the situation is simple. One asks therefore which condi- 
tions must the Pik of a transformation fulfil, in order that 

r .  = v ) -  KO. * 

itself transforms like a tensor under the transformation. One obtains then 
partial differential equations for the P~k- It is a question of whether these 
latter have solutions compatible with the integrability conditions--I want to 
carry out the calculations but then I am frustrated by the complicatedness 
of the equations. It can be shown that if nonlinear transformations do not 
exist at all, then the theory merits no confidence. 

*This equation and the equation (18) referred to in the letter are to be found in Einstein and 
Grossmann (1913), Chap. 4. p. 239. 
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On the cont rary  it is very interesting that the equat ions of  relativity 
yield the inertial mass. The following thing is about  to be published: 

1. The existence of  an inert resting spherical shell increases the inertia 
of  a mass which is inside of  it. 

2. An  acceleration of  K induces a compat ib le  ~ K 
accelerating force which acts on m. LL; 

3. If  K rotates, then in this way a coriolis force is formed inside of  K, 
in such a way that a pendu lum suspended inside of  K will be so 
influenced that its plane of  oscillation will be taken along. 

All these effects are indeed on account  of  their minuteness no p roof  but 
are in themselves plausible, as Mach  has so elegantly shown through his 
crit ique of  Newton ' s  Principia  in his Mechanics .  
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